

1

High Speed Cryptoprocessor for η_T Pairing on 128-bit Secure Supersingular Elliptic Curves over Characteristic Two Fields

Santosh Ghosh, Dipanwita Roy Chowdhury, and Abhijit Das

Computer Science and Engineering Indian Institute of Technology Kharagpur India, 721302

{santosh,drc,abhij}@cse.iitkgp.ernet.in

Contents

Introduction

Contributions

- Karatsuba multiplier over F₂₁₂₂₃ field
- Architectures for η_T pairing

Conclusion

Introduction

- Pairing for designing cryptographic scheme introduced in 2000
 - ID-based encryption (IBE) scheme by Boneh and Franklin [1]
- It is well suited for identity based cryptography

- has gained lot of importance in recent times
- As a natural consequence, implementations of pairings are also extremely important
- This paper broadly addresses design techniques of a pairing cryptoprocessor with high security level

Boneh, D., and Franklin, M.K.: Identity-based encryption from the Weil pairing. Crypto 2001, LNCS 2139, pp. 213-229, 2001.

Introduction cont...

- Cryptographic pairings are computed on elliptic or hyperelliptic curves
 - defined over suitably large finite fields
 - having small embedding degree [2, 3].
- The security of a pairing depends on the underlying algebraic curves and respective field types
 - Example of an128-bit secure pairing :
 - η_T pairing computed on a supersingular elliptic curve defined over $F_{2^{1223}}$ and having embedding degree k = 4.
- NIST recommendation: 128-bit symmetric security is essential beyond 2030
 - it is of importance to explore the efficient implementation techniques of 128-bit secure pairings on different platforms.
 - [2] Hoffstein, J., Pipher, J., and Silverman, J.H.: An introduction to mathmatical cryptography. Springer, 2008.
 - [3] Galbraith, S.: Pairings. In I. F. Blake, G. Seroussi, and N. P. Smart, editors. Advances in elliptic curve cryptography. London Mathematical Society Lecture Note Series, chapter IX. Cambridge University Press, 2005.

Existing works

- Hardware implementation of 128-bit secure pairings was introduced in 2009, individually by Kammler et al. [4] and Fan et al. [5].
 - Described hardware implementation techniques for computing 128-bit secure pairings over Barreto-Naehrig curves (BN curves) [6].
- Thereafter, designs in [7, 8, 9, 10] are appeared in literature
 - computes 128-bit secure pairings in 2.3ms, 16.4ms, 3.5ms, and 1.07ms.
- High-speed software implementations reported in [11, 12]

- compute 128-bit secure pairings in 0.832ms and 1.87ms.
- [4] Kammler et al: Designing an ASIP for cryptographic pairings over Barreto-Naehrig curves. CHES 2009.
- [5] Fan et al: Faster Fp-arithmetic for cryptographic pairings on Barreto-Naehrig curves. CHES 2009.
- [6] Barreto, P.S.L.M., and Naehrig, M.: Pairing-friendly elliptic curves of prime order. SAC 2005.
- [7] Estibals, N.: Compact hardware for computing the Tate pairing over 128-bitsecurity supersingular curves. Pairing 2010.
- [8] Ghosh et al: High speed flexible pairing cryptoprocessor on FPGA platform. Pairing 2010.
- [9] Aranha et al: Optimal Eta pairing on supersingular genus-2 binary hyperelliptic curves. ePrint Report 2010/559.
- [10] Duquesne et al: A FPGA pairing implementation using the residue number system. ePrint Report 2011/176.
- [11] Beuchat et al: High-speed software implementation of the Optimal Ate pairing over Barreto-Naehrig curves. Pairing 2010.
- [12] Beuchat et al: Multicore Implementation of the Tate Pairing over Supersingular Elliptic Curves. ePrint Report 2009/276.

Contributions

Major contributions of the paper are:

- It explores area-time tradeoff designs of Karatsuba multiplier over $F_{2^{1223}}$ field.
- It further explores high speed architecture for computing η_T pairing on supersingular elliptic curves.
- It provides the first hardware implementation result of an 128-bit secure pairing on elliptic curves over characteristic two fields.
- The proposed design achieves the fastest computation (190 µs) of an 128bit secure pairing.

The F₂₁₂₂₃-Multiplier

Multiplication is the key operation of a pairing computation

* The 128-bit secure η_T pairing demands multiplication in an 1223-bit characteristic-two field.

* Karatsuba multiplication is an efficient and popular technique for fields like F_{a^m} .

- It is a divide-and-conquer algorithm
- An m-bit multiplication is divided recursively into several m/k-bit multiplications with small k ∈ {2, 3}.

The F₂₁₂₂₃-Multiplier (Cont...)

• Multiplication for k = 2 in F_{q^m} could be computed as :

$$a \cdot b = (a_1 x^{\lceil m/2 \rceil} + a_0)(b_1 x^{\lceil m/2 \rceil} + b_0)$$

= $a_1 b_1 x^m + [(a_1 + a_0)(b_1 + b_0) - a_1 b_1 - a_0 b_0] x^{\lceil m/2 \rceil} + a_0 b_0$

- An m-bit multiplication can be performed by:
 - three m/2-bit multiplications
 - four m-bit and two m/2-bit additions.

Implementation could be performed in several ways.

- We show four different design techniques

1. Fully Parallel Multiplier for F₂₁₂₂₃

Decomposition is done as:

The synthesis tool estimates 324342 LUTs for an 1223bit fully parallel Karatsuba multiplier.

– makes it infeasible to implement on a single Virtex-4 FPGA device

2. Serial Use of 612-bit Parallel Multiplier

- It consists of a fully parallel 612-bit Karatsuba multiplier
 - Three 612-bit multiplications are performed in **serial** for computing a multiplication in $F_{2^{1223}}$
- ✤ The synthesis tool estimates 95324 LUTs.
 - It is feasible to implement on a high-end single FPGA device
 - a full pairing hardware demands much more circuits than a single multiplier
 - may infeasible to put in a single FPGA.

3. Serial Use of 306-bit Parallel Multiplier

- It consists of a fully parallel 306-bit Karatsuba multiplier
 - Nine 306-bit multiplications are performed in **serial** for computing a multiplication in $F_{2^{1223}}$
- ★ The computation is performed as: $a \cdot b = (a_1 x^{612} + a_0)(b_1 x^{612} + b_0)$ $= a_1 b_1 x^{1222} + [(a_1 + a_0)(b_1 + b_0) a_1 b_1 a_0 b_0] x^{612} + a_0 b_0.$
 - Three 612-bit multiplications: a_0b_0 , a_1b_1 , and $(a_1+a_0)(b_1+b_0)$
 - performed as:

$$a_{0} \cdot b_{0} = (a_{01}x^{306} + a_{00})(b_{01}x^{306} + b_{00})$$

= $a_{01}b_{01}x^{612} + [(a_{01} + a_{00})(b_{01} + b_{00}) - a_{01}b_{01} - a_{00}b_{00}]x^{306} + a_{00}b_{00}$
= $a_{01}b_{01}x^{612} + [g_{0}h_{0} - a_{01}b_{01} - a_{00}b_{00}]x^{306} + a_{00}b_{00},$ (2)

Three 306-bit multiplications: $a_{01}b_{01}$, $a_{00}b_{00}$, and $(a_{01}+a_{00})(b_{01}+b_{00})$

- To sum up : nine 306-bit multiplications.

Multiplier Architecture

- The operands of nine multiplications are stored into two sets of nine 306-bit parallel shift registers.
- The registers are automatically reloaded by synchronous shift operations.
 - ensures two correct operands at a_{00} and b_{00} registers.
- Multiplier latency: one clock cycle.
- Partial results of 1223-bit multiplication are accumulated accordingly. (Algorithm is provided in Appendix)
- Latency of one 1223-bit multiplication: 10 clock cycles

Multiplier on FPGA

♦ Demands \approx 30k LUT.

• affordable to implement on a medium range FPGA

Multiplier	FPGA	LUTs	Frequency	Serial	Multiplication	(ΛT) §
type	family		[MHz]	use	latency $[ns]$	$(A \cdot I)^{\circ}$
Serial use of	Virtex-2	34 547	125	10	80.0	2.76
306-bit parallel	Virtex-4	34 325	168	10	60.0	2.06
multiplier	Virtex-6	30 148	250	10	40.0	1.21
\S : $(A \cdot T)$ represents product of <i>area</i> in LUTs and <i>time</i> in milliseconds.						

4. Serial use of 153-bit parallel multiplier

- Demands low resources : 16231 LUTs
- Requires 27 serial use
- Latency of one 1223-bit multiplication : 151ns
 - 2.5 times slower than 306-bit parallel multiplier
 - The $A \cdot T$ value is 2.46.
 - is 1.2 times higher than 306-bit parallel multiplier

Serial use of 306-bit parallel multiplier provides the most optimized design.

The η_T Pairing Cryptoprocessor over $F_{2^{1223}}$

The pairing computation consists of two major operations

- 1. the non-reduced pairing (Miller's algorithm)
- 2. the final exponentiation

Main Features:

- Consists of a common datapath for both operations
- ✤ Adequate parallelism is applied to achieve high speed

Major difference with existing architecture of [13]:

Contrast to two separate coprocessors current design has one processing unit for both operations.

> [13] Beuchat et al.: Fast architectures for the T pairing over small-characteristic supersingular elliptic curves. IEEE Transactions on Computers,

Computation of η_T pairing

Algorithm 1: Computing the η_T pairing on $E/\mathbb{F}_{2^{1223}}$. Intermediate variables in uppercase belong to $\mathbb{F}_{(2^{1223})^4}$, whereas those in lowercase to $\mathbb{F}_{2^{1223}}$.

Proposed Architecture

Execution procedure

➤ Initialization : Step 1 to step 5 is preformed synchronously with reset.

▷ Computation of $G^{(i)}$: - the sparse value of $G^{(i)} \in \mathbb{F}_{(2^{1223})^4}$ in {1, u, v, uv} basis is represented $\mathfrak{t} g_0^{(i)} + g_1^{(i)}u + 1$.

- it consists of one multiplication $s^{(i)} \cdot t_0^{(i)}$.
- in total it takes 12 clock cycles.

Sparse Multiplication over $\mathbb{F}_{(2^{1223})^4}$: - it consists only six multiplications in $\mathbb{F}_{2^{1223}}$ - in total it takes 61 clock cycles.

Computation Cost of Miller's Algorithm :

- one iteration takes 73 clock cycles.

- in total its cost 44688 clock cycles.

Execution procedure

Final Exponentiation : - the output of Miller's algorithm is raised to the power of $(2^{2446} - 1)(2^{1223} - 2^{612} + 1)$.

- powering $G = g_0 + g_1 u + g_2 v + g_3 uv \mathbb{F}_{(2^{1223})^4}$ is easy: $G^{2^{1223}} = (g_0 + g_1 + g_2) + (g_1 + g_2 + g_3)u + (g_2 + g_3)v + g_3 uv$
- further one inversion followed by one multiplication in $\mathbb{F}_{(2^{1223})^4}$.

- in total, cost of final exponentiation is : 98M + 1842S + 1842S

135A.

- the proposed cryptoprocessor computes final exponentiation in 2922 clock cycles.

Total clock cycle count for computing an 128-bit secure η_T pairing is 47610 on our proposed cryptoprocessor.

Experimental results

- The whole design has been done in Verilog (HDL).
- Results from the place-and-route report of Xilinx ISE Design Suit is shown here:

Platform	Slice	\mathbf{LUT}	Frequency	Frequency Clock		Times
			[MHz]	Cycles	[bit]	$[\mu s]$
Virtex-2	36534	69367	125			381
Virtex-4	35458	69367	168	47610	128	286
$Virtex-6^{\ddagger}$	15167	54681	250			190
‡ : One Virtex-6 slice consists of four LUTs and eight flip-flops.						

• it finishes computation of one 128-bit secure η_T pairing in 190 μs on a Virtex-6 FPGA.

Comparison

Two aspects of the proposed design

1. Existing η_T pairing processors over characteristic-two fields

- [28] Shu et al. : Reconfigurable computing approach for tate pairing cryptosystems over binary fields. IEEE Transactions on Computers, 2009.
- [5] Beuchat et al.: Fast architectures for the T pairing over small-characteristic supersingular elliptic curves. IEEE Transactions on Computers, 2011.

Comparison cont...

2. Existing 128-bit secure pairing implementations irrespective of underlying curve and field types.

Designs	Curve FPGA		${f Area}$	Freq.	Times	$A \cdot T^{\dagger}$	
Designs	Curve	FI GA	Alea	[MHz]	$[\mu s]$	$A \cdot I$	
Duquesne et al. $[9]$ §	$E/\mathbb{F}_{p_{256}}$	Stratix III	4233 A‡	165	1070	-	
Fan et al. $[11]$	$E/\mathbb{F}_{p_{256}}$	xc6vlx240-3	4014 Slices, 42 DSP	210	1170	-	
Kammler <i>et al.</i> [21]	$E/\mathbb{F}_{p_{256}}$	130nm CMOS	97000 Gates	338	15800	-	
Fan <i>et al.</i> [12]	$E/\mathbb{F}_{p_{256}}$	130nm CMOS	183000 Gates	204	2900	-	
Ghosh $et al. [14]$	$E/\mathbb{F}_{p_{256}}$	xc4vlx200-12	52000 Slices	50	16400	852.8	
Estibals [10]	$E/\mathbb{F}_{3^{5\cdot97}}$	xc4vlx200-11	4755 Slices	192	2227	10.6	
Aranha et al. [1]	$Co/\mathbb{F}_{2^{367}}$	xc4vlx25-11	4518 Slices	220	3518	15.9	
This work	$E/\mathbb{F}_{2^{1223}}$	xc4vlx200-11	35458 Slices	168	286	10.1	
This work	$E/\mathbb{F}_{2^{1223}}$	xc6vlx130t-3	🖊 15167 Slices	250	1 190	1 2.9	
$\dagger A \cdot T$ represents product of <i>area</i> in slices and <i>time</i> in seconds.							
§ It provides 126-bit security instead of 128-bit.							
‡ It has 8 Rowers, each consisting of two 36x36 DSP blocks and one 9x9 multiplier.							
Intermediate area Smallest AT valu							

- Highest speed
- First in micro-second range

Comparison cont...

Existing high speed software for 128-bit pairings are also slower than our proposed design. Here we summarize the software results.

Reference	Platform	Pairing	Curve	Frequency	Times
neierence	Flatiorin	Fairing	Curve	[MHz]	[ms]
Beuchat et al. [7]	core i $7.2.8 \mathrm{GHz}$	modified Tate	$E/\mathbb{F}_{3^{509}}$	2800	1.87
			$E/\mathbb{F}_{2^{1223}}$	2800	3.08
Naehrig et al. [26]	core2 Q6600	optimal-ate	$E/\mathbb{F}_{p_{256}}$	2394	1.86
Beuchat et al. [6]	core i $7.2.8 \mathrm{GHz}$	optimal-ate	$E/\mathbb{F}_{p_{256}}$	2800	0.83
Hankerson et al. [16]	64-bit core2	optimal-ate	$E/\mathbb{F}_{p_{256}}$	2400	6.25
		η_T	$E/\mathbb{F}_{2^{1223}}$	2400	16.25
		η_T	$E/\mathbb{F}_{3^{509}}$	2400	13.75
Grabher et al. [15]	64-bit core 2	ate	$E/\mathbb{F}_{p_{256}}$	2400	6.01

The most efficient on take 0.83 ms, which is 4.3 times slower than our proposed design

Conclusion

- Area and time optimized hybrid Karatsuba multiplier for $F_{2^{1223}}$
 - o Significant parallelism for speed up
 - Moderate area for optimization.
- Pairing cryptoprocessor
 - A common datapath for both non-reduced pairing and final exponentiation.
 - Reduces the overall logic cells
 - It computes η_T pairing in characteristic-two field with higher security (128:105) in **half area.**
 - it achieves **eight times speedup** and provides the **best** *area* * *time* product compared to the existing designs.

Minor corrections:

2.

Table 6. Software for 128-bit secure pairings

Reference	Platform	Pairing C	$[urve]{MHz}$	Frequency	$\mathbf{Times}_{[ms]}$
Beuchat et al. $[7]$	core i7 2.8GHz	modified Tate $E_{/}$	$/\mathbb{F}_{3}$ 509	2800	1.87

[*MHz*] should be at the bottom of Frequency

